首页 » 软件优化 » csapp之lab:shell lab(进程作业运行信号前台)

csapp之lab:shell lab(进程作业运行信号前台)

乖囧猫 2024-10-24 16:52:39 0

扫一扫用手机浏览

文章目录 [+]

void eval(char cmdline):分析命令,并派生子进程执行 主要功能是解析cmdline并运行int builtin_cmd(char argv):解析和执行bulidin命令,包括 quit, fg, bg, and jobsvoid do_bgfg(char argv) 执行bg和fg命令void waitfg(pid_t pid):实现阻塞等待前台程序运行结束void sigchld_handler(int sig):SIGCHID信号处理函数void sigint_handler(int sig):信号处理函数,响应 SIGINT (ctrl-c) 信号 void sigtstp_handler(int sig):信号处理函数,响应 SIGTSTP (ctrl-z) 信号辅助函数

可用辅助函数:

int parseline(const char cmdline,char argv):获取参数列表,返回是否为后台运行命令void clearjob(struct job_t job):清除job结构体。
void initjobs(struct job_t jobs):初始化jobs链表。
void maxjid(struct job_t jobs):返回jobs链表中最大的jid号。
int addjob(struct job_t jobs,pid_t pid,int state,char cmdline):在jobs链表中添加jobint deletejob(struct job_t jobs,pid_t pid):在jobs链表中删除pid的job。
pid_t fgpid(struct job_t jobs):返回当前前台运行job的pid号。
struct job_t getjobpid(struct job_t jobs,pid_t pid):返回pid号的job。
struct job_t getjobjid(struct job_t jobs,int jid):返回jid号的job。
int pid2jid(pid_t pid):将pid号转化为jid。
void listjobs(struct job_t jobs):打印jobs。
void sigquit_handler(int sig):处理SIGQUIT信号。
简介

shell是交互式的命令行解释器,打印提示符并在stdin上等待输入命令,并按照命令行的内容执行。
命令行是ASCII单词组成的命令和参数序列。
若首个单词是内置命令,shell会立即在当前进程中执行。
否则是可执行文件路径,shell派生出子进程,然后在该子进程的上下文中加载和运行程序。
解释单个命令行而创建的子进程叫作业,通常由Unix管道连接的多个子进程组成。
若命令行以&号“&”结束,则作业将在后台运行且不会等待作业结束。
否则作业将在前台运行且等待作业终止。
故在任何时间点最多仅一个作业在前台运行。
但可在后台运行任意数量的作业。

例如:tsh> /bin/ls -l -d

csapp之lab:shell lab(进程作业运行信号前台) 软件优化
(图片来自网络侵删)

在前台运行程序,程序的入口是:int main(int argc,char argv[])

则argc==3,argv[0] == ‘‘/bin/ls’’,argv[1]== ‘‘-l’’,argv[2]== ‘‘-d’’。
若在命令行后加上&,则在后台运行ls程序。
shell支持作业控制,允许用户在后台和前台移动作业,并更改作业中进程的状态(运行、停止或终止)。
输入ctrl-c会向前台作业中的每个进程发送SIGINT信号,默认操作是终止进程。
类似地,键入ctrl-z将向前台作业中的每个进程发送SIGTSTP信号,默认操作是将进程置于停止状态,直到收到SIGCONT信号将其唤醒。
当然shell也提供内置命令支持作业控制:

jobs:列出运行和终止的后台作业bg <job>:将终止的后台作业改为运行fg <job>:将终止或运行的后台作业改为前台运行kill <job>:发送特定信号给特定进程和进程组,默认动作是终止进程quit:终止shell

有三点值得注意:

tsh不支持管道和I/O重定向每个作业要么被process ID识别,要么被job ID识别,jid应该在命令行中用前缀“%”表示,“%5”表示jid 5,5表示PID 5shell因该回收所有僵尸进程,若任何一个作业因为接收到它没有捕捉到的信号而终止,那么tsh应该识别该事件,并打印PID和错误描述消息提示仔细阅读CSAPP第八章的异常控制流和lab的writeupmake testn测试shell执行第n组测试数据的输出,make rtestn打印shell预期输出,tshref.out包含shell所有预期输出结果,先看文件输出,了解命令格式再编码,修改makefile文件中CFLAGS字段,加-g参数并去掉-O2参数waitpid, kill, fork,execve, setpgid, sigprocmask 很常用,可通过命令手册查看使用细节,WUNTRACED和WNOHANG选项对waitpid也很有用实现信息处理函数,确保发送SIGINT和SIGTSTP信号给整个前台进程组,用-pid代替pid作为kill参数建议在waitfg的循环中用sleep函数,在sigchld_handler中对waitpid只调用一次eval中进程在fork之前用sigprocmask阻塞SIGCHLD信号,之后在解除信号阻塞,之后在调用addjob添加孩子到作业列表用sigprocmask阻塞信号,因为子继承继承父进程的阻塞集合,所以子程序必须确保在执行新进程前解除阻塞SIGCHLD信号。
父进程需以这种方式阻塞SIGCHLD信号,避免在父进程调用addjob之前,SIGCHLD处理器获取子进程(从而从任务列表中删除)的竞争状态。
不要直接调用常用命令,而应输入完整路径,如/bin/ls当在标准Unix shell运行tsh时,tsh运行在前台进程组中。
若tsh随后创建子进程,默认情况下,该子进程也是前台进程组的成员。
因为按下ctrl-c会向前台组中的每个进程发送SIGINT信号,按下ctrl-c会向tsh及Unix shell创建的每个子进程,显然不正确。
应该在fork后,但在execve前,子进程调用setpgid(0,0),把子进程放到新进程组中,该进程组ID与子进程的PID相同。
确保前台进程组中只有一个进程,即tsh进程。
当按下ctrl-c时,tsh应捕获生成的SIGINT,然后将其转发给包含前台作业的进程组。
实验前环境配置

由于csapp都是运行在32位系统,即使安装32位系统所需的库,仍然无法运行tsh,在网上找到有人配置好的csapp的docker镜像,因此直接使用docker,环境配置如下:

安装docker,并配置加速安装vscode和ssh插件命令行中运行systemctl start docker启动docker和docker run --privileged -d -p 1221:22 --name shell yansongsongsong/csapp:shelllabshell lab的实验环境通过ssh输入密码登录实验环境实验

在vscode中打开shlab-handout文件夹,并打开tsh.c文件,可以看到在main函数中调用eval函数,而在书P525或20-ecf-sigs的P19可找到eval函数的整体代码框架:

void eval(char cmdline) { char argv[MAXARGS];/Argument list execve() / char buf[MAXLINE];/Holds modified command line / int bg;/Should the job run in bg or fg? / pid_t pid;/Process id / strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return;/ Ignore empty lines / if (!builtin_cmd(argv)) { if ((pid = Fork()) == 0) {/ Child runs user job / Execve(argv[0], argv, environ); }/ Parent waits for foreground job to terminate / if (!bg) { int status; if (waitpid(pid, &status,0) < 0) unix_error("waitfg: waitpid error"); } else printf("%d %s", pid, cmdline); } return;}

尽管ppt上说有bug,暂时先不管,先搞好整体框架,完成简单的函数,到后面再考虑。
另外值得一提的是这里将fork和execve都进行封装以处理错误情况。
运行make rtest01和make test01可以看到输出一样,已经达到要求。
同样操作,可以看到test02未按照预期退出tsh,分析知需要实现builtin_cmd函数。
同样在书上P525能找到基础代码,只需加上jobs、fg、bg3种情况即可。
代码如下:

int builtin_cmd(char argv) { if(!strcmp(argv[0],"quit")) / quit command / exit(0); if (!strcmp(argv[0], "&")) / Ignore singleton & / return 1; if(!strcmp((argv[0]),"jobs"))/ jobs command / { listjobs(jobs); return 1; } if(!strcmp((argv[0]),"fg") || !strcmp((argv[0]),"bg"))/ bg/fg command / { do_bgfg(argv); return 1; } return 0; / not a builtin command /}

这样就过了test02和test03,经过比较test04和rtest04的输出,确定只需修改输出格式即可:

printf("[%d] (%d) %s", pid2jid(pid),pid, cmdline);

接着发现test05是执行内部命令:jobs,打印job list,比对rtest05发现没有打印出job,参考上面的提示第6条,知应同步避免父子竞争,具体来说:父进程在fork前屏蔽信号,子进程在execve前还原信号,因为子进程会继承原来的屏蔽信号。
同时前台job需要调用waitfg进行等待。
如果不阻塞会出现子进程先结束从jobs中删除,然后再执行到主进程addjob的竞争问题。
在书上P542和PPT P57页都有对应的参考代码:

int main(int argc, char argv){ int pid; sigset_t mask_all, mask_one, prev_one; int n = N; / N = 5 / Sigfillset(&mask_all); Sigemptyset(&mask_one); Sigaddset(&mask_one, SIGCHLD); Signal(SIGCHLD, handler); initjobs(); / Initialize the job list / while (n--) { Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); / Block SIGCHLD / if ((pid = Fork()) == 0) { / Child process / Sigprocmask(SIG_SETMASK, &prev_one, NULL); / Unblock SIGCHLD / Execve("/bin/date", argv, NULL); } Sigprocmask(SIG_BLOCK, &mask_all, NULL); / Parent process / addjob(pid); / Add the child to the job list / Sigprocmask(SIG_SETMASK, &prev_one, NULL); / Unblock SIGCHLD / } exit(0);}

加上图中对应代码,同时若子进程结束,需要delete job,在sigchld_handler中加上非阻塞循环等待子进程的代码:

void eval(char cmdline) { char argv[MAXARGS];/Argument list execve() / char buf[MAXLINE];/Holds modified command line / int bg;/Should the job run in bg or fg? / pid_t pid;/Process id / sigset_t mask_all,mask_one,prev_one; strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return;/ Ignore empty lines / if (!builtin_cmd(argv)) { Sigfillset(&mask_all);/ add every signal number to set / Sigemptyset(&mask_one);/ create empty set / Sigaddset(&mask_one, SIGCHLD);/ add signal number to set / / block SIGINT and save previous blocked set / Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); / Block SIGCHLD / if ((pid = Fork()) == 0) {/ Child runs user job / / restore previous blocked set,unblocking SIGINT / Sigprocmask(SIG_SETMASK, &prev_one, NULL); / Unblock SIGCHLD / //Setpgid(0,0); Execve(argv[0], argv, environ); }/ Parent waits for foreground job to terminate / Sigprocmask(SIG_BLOCK, &mask_all, NULL); / Block SIGCHLD / int st = (bg==0) ? FG : BG; addjob(jobs,pid,st,cmdline); Sigprocmask(SIG_SETMASK, &prev_one, NULL); / Unblock SIGCHLD / if (!bg) { //由于sigchld_handler上面被调用,而上面回调用waitpid,因此这里不用调用只需循环等待即可 waitfg(pid); } else printf("[%d] (%d) %s", pid2jid(pid),pid, cmdline); } return;}

void sigchld_handler(int sig) { int olderrno = errno; sigset_t mask_all,prev_all; pid_t pid; Sigfillset(&mask_all); /改成非阻塞,否则test05中运行到此处,前端进程执行jobs会阻塞直到所有子进程都被回收,即两个后端进程都执行并delete才会离开,则jobs命令什么也没有打印/ while((pid = waitpid(-1,NULL,WNOHANG | WUNTRACED))>0){ Sigprocmask(SIG_BLOCK,&mask_all,&prev_all); deletejob(jobs,pid); Sigprocmask(SIG_SETMASK,&prev_all,NULL); } errno = olderrno; return;}

如果是前台命令,则调用waitfg循环等待,在注释中看到最好不要用waitpid(pid,NULL,0),其次根据上面的提示,不要同时在sigchld_handler和waitfg函数中使用waitpid,因为在同一个程序的两个地方都回收僵死进程,虽然也行,但容易让人迷惑:

void waitfg(pid_t pid){ while(fgpid(jobs)) usleep(1000);//一秒 return;}

这样就完成test05,接下来test06和test07、test08就是实现SIGINT和SIGSTOP信号处理函数,注意前面提示的第4条用-pid作为kill的参数,同时最后一条在fork后execve前子进程应调用setpgid(0,0),否则会报错No such process,注意sigint_handler和sigtstp_handler只需调用kill即可,将输出留到sigchld_handler中,这样就需修改前面的sigchld_handler以处理不同子进程退出状态:

void sigint_handler(int sig) { int olderrno = errno; pid_t fg = fgpid(jobs); if(fg){ Kill(-fg,sig); } errno = olderrno; return;}void sigtstp_handler(int sig) { int olderrno = errno; pid_t fg = fgpid(jobs); if(fg){ Kill(-fg,sig); } errno = olderrno; return;}

void sigchld_handler(int sig) { int olderrno = errno; sigset_t mask_all,prev; pid_t pid; int status; Sigfillset(&mask_all); /改成非阻塞,否则test05中运行到此处,前端进程执行jobs会阻塞直到所有子进程都被回收,即两个后端进程都执行并delete才会离开,则jobs命令什么也没有打印/ while((pid = waitpid(-1,&status,WNOHANG | WUNTRACED))>0){ // WNOHANG | WUNTRACED 是立即返回 // 用WIFEXITED(status),WIFSIGNALED(status),WIFSTOPPED(status)等来补获终止或者 // 被停止的子进程的退出状态。
if (WIFEXITED(status)) // 正常退出 delete { sigprocmask(SIG_BLOCK, &mask_all, &prev); deletejob(jobs, pid); sigprocmask(SIG_SETMASK, &prev, NULL); } else if (WIFSIGNALED(status)) // 信号退出 delete { struct job_t job = getjobpid(jobs, pid); sigprocmask(SIG_BLOCK, &mask_all, &prev); printf("Job [%d] (%d) terminated by signal %d\n", job->jid, job->pid, WTERMSIG(status)); deletejob(jobs, pid); sigprocmask(SIG_SETMASK, &prev, NULL); } else // 停止 只修改状态就行 { struct job_t job = getjobpid(jobs, pid); sigprocmask(SIG_BLOCK, &mask_all, &prev); printf("Job [%d] (%d) stopped by signal %d\n", job->jid, job->pid, WSTOPSIG(status)); job->state= ST; sigprocmask(SIG_SETMASK, &prev, NULL); } } errno = olderrno; // 恢复 return;}

这样就完成test06和test07、test08。
接下来test09和test10是测试fg和bg内置命令,先解析命令通过getjobjid或getjobpid获取job,再分情况对fg和bg命令做不同处理,输入%num 代表任务id,num代表进程id,分情况讨论即可,但要注意各种异常情况:

void do_bgfg(char argv) { if(!argv[1]){ printf("%s command requires PID or %%jobid argument\n", argv[0]); return; } if (!isdigit(argv[1][0]) && argv[1][0] != '%') { // Checks if the second argument is valid printf("%s: argument must be a PID or %%jobid\n", argv[0]); return; } struct job_t myjob; if(argv[1][0]=='%'){ myjob = getjobjid(jobs,atoi(&argv[1][1])); if(!myjob){ printf("%s: No such job\n", argv[1]); return; } }else{ myjob = getjobpid(jobs,atoi(argv[1])); if (!myjob) { // Checks if the given PID is there printf("(%d): No such process\n", atoi(argv[1])); return; } } Kill(-myjob->pid,SIGCONT); if(!strcmp(argv[0],"bg")){ myjob->state = BG; printf("[%d] (%d) %s",myjob->jid,myjob->pid,myjob->cmdline); }else{ myjob->state = FG; waitfg(myjob->pid); } return;}

这样就过了test09和test10。
接下来test11 和test12 、test13分别测试Forward SIGINT、Forward SIGTSTP、Restart stopped process都能正常通过,若没通过,因该是前面某些测试有问题,解决后即可。
test14是测试JID或PID的错误输入的情况,较容易通过。
test15将前面所有测试情况放一起,也顺利通过,而test16是测试tsh能否处理不是来自终端而是来自其他进程的SIGSTP和SIGINT信号,顺利通过。

总结

最终代码见下,该实验主要涉及加载、进程控制、信号等基础但很重要的知识,涉及到异常控制流、进程、系统调用、信号处理函数与非本地跳转等并发编程的知识。
并发的同步问题是关键,利用信号屏蔽与还原就能解决。
此外阅读 man 手册了解系统接口使用细节对完成实验很有帮助。

/ tsh - A tiny shell program with job control <Put your name and login ID here> /#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <string.h>#include <ctype.h>#include <signal.h>#include <sys/types.h>#include <sys/wait.h>#include <errno.h>/ Misc manifest constants /#define MAXLINE 1024 / max line size /#define MAXARGS 128 / max args on a command line /#define MAXJOBS 16 / max jobs at any point in time /#define MAXJID 1<<16 / max job ID // Job states /#define UNDEF 0 / undefined /#define FG 1 / running in foreground /#define BG 2 / running in background /#define ST 3 / stopped // Jobs states: FG (foreground), BG (background), ST (stopped) Job state transitions and enabling actions: FG -> ST : ctrl-z ST -> FG : fg command ST -> BG : bg command BG -> FG : fg command At most 1 job can be in the FG state. // Global variables /extern char environ; / defined in libc /char prompt[] = "tsh> "; / command line prompt (DO NOT CHANGE) /int verbose = 0; / if true, print additional output /int nextjid = 1; / next job ID to allocate /char sbuf[MAXLINE]; / for composing sprintf messages /struct job_t { / The job struct / pid_t pid; / job PID / int jid; / job ID [1, 2, ...] / int state; / UNDEF, BG, FG, or ST / char cmdline[MAXLINE]; / command line /};struct job_t jobs[MAXJOBS]; / The job list // End global variables //error handling function /pid_t Fork(void);void Execve(const char filename, char const argv[], char const environ[]);void Kill(pid_t pid, int signum);void Sigemptyset(sigset_t set);void Sigaddset(sigset_t set, int signum);void Sigfillset(sigset_t set);void Setpgid(pid_t pid, pid_t pgid);void Sigprocmask(int how, sigset_t set, sigset_t oldset);/ Function prototypes // Here are the functions that you will implement /void eval(char cmdline);int builtin_cmd(char argv);void do_bgfg(char argv);void waitfg(pid_t pid);void sigchld_handler(int sig);void sigtstp_handler(int sig);void sigint_handler(int sig);/ Here are helper routines that we've provided for you /int parseline(const char cmdline, char argv); void sigquit_handler(int sig);void clearjob(struct job_t job);void initjobs(struct job_t jobs);int maxjid(struct job_t jobs); int addjob(struct job_t jobs, pid_t pid, int state, char cmdline);int deletejob(struct job_t jobs, pid_t pid); pid_t fgpid(struct job_t jobs);struct job_t getjobpid(struct job_t jobs, pid_t pid);struct job_t getjobjid(struct job_t jobs, int jid); int pid2jid(pid_t pid); void listjobs(struct job_t jobs);void usage(void);void unix_error(char msg);void app_error(char msg);typedef void handler_t(int);handler_t Signal(int signum, handler_t handler);/ main - The shell's main routine /int main(int argc, char argv) { char c; char cmdline[MAXLINE]; int emit_prompt = 1; / emit prompt (default) / / Redirect stderr to stdout (so that driver will get all output on the pipe connected to stdout) / dup2(1, 2); / Parse the command line / while ((c = getopt(argc, argv, "hvp")) != EOF) { switch (c) { case 'h': / print help message / usage(); break; case 'v': / emit additional diagnostic info / verbose = 1; break; case 'p': / don't print a prompt / emit_prompt = 0; / handy for automatic testing / break;default: usage();} } / Install the signal handlers / / These are the ones you will need to implement / Signal(SIGINT, sigint_handler); / ctrl-c / Signal(SIGTSTP, sigtstp_handler); / ctrl-z / Signal(SIGCHLD, sigchld_handler); / Terminated or stopped child / / This one provides a clean way to kill the shell / Signal(SIGQUIT, sigquit_handler); / Initialize the job list / initjobs(jobs); / Execute the shell's read/eval loop / while (1) {/ Read command line /if (emit_prompt) { printf("%s", prompt); fflush(stdout);}if ((fgets(cmdline, MAXLINE, stdin) == NULL) && ferror(stdin)) app_error("fgets error");if (feof(stdin)) { / End of file (ctrl-d) / fflush(stdout); exit(0);}/ Evaluate the command line /eval(cmdline);fflush(stdout);fflush(stdout); } exit(0); / control never reaches here /} / eval - Evaluate the command line that the user has just typed in If the user has requested a built-in command (quit, jobs, bg or fg) then execute it immediately. Otherwise, fork a child process and run the job in the context of the child. If the job is running in the foreground, wait for it to terminate and then return. Note: each child process must have a unique process group ID so that our background children don't receive SIGINT (SIGTSTP) from the kernel when we type ctrl-c (ctrl-z) at the keyboard. /void eval(char cmdline) { char argv[MAXARGS];/Argument list execve() / char buf[MAXLINE];/Holds modified command line / int bg;/Should the job run in bg or fg? / pid_t pid;/Process id / sigset_t mask_all,mask_one,prev_one; strcpy(buf, cmdline); bg = parseline(buf, argv); if (argv[0] == NULL) return;/ Ignore empty lines / if (!builtin_cmd(argv)) { //blocking SIGCHLD in if status,otherewise it maybe has bugs Sigfillset(&mask_all);/ add every signal number to set / Sigemptyset(&mask_one);/ create empty set / Sigaddset(&mask_one, SIGCHLD);/ add signal number to set / / block SIGINT and save previous blocked set / / avoid parent process run to addjob exited,before fork child process block sigchild signal,after call addjob unblock / Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); / Block SIGCHLD / if ((pid = Fork()) == 0) {/ Child runs user job / / restore previous blocked set,unblocking SIGINT / / child process inherit parent process' blocking sets,avoid it can't receive itself child process signal,so we must unblock / Sigprocmask(SIG_SETMASK, &prev_one, NULL); / Unblock SIGCHLD / Setpgid(0,0);// set child's group to a new process group (this is identical to the child's PID) Execve(argv[0], argv, environ);//this function not return ,so must call exit,otherewise it will run forever }/ Parent waits for foreground job to terminate / Sigprocmask(SIG_BLOCK, &mask_all, NULL); / Block SIGCHLD / int st = (bg==0) ? FG : BG; addjob(jobs,pid,st,cmdline); Sigprocmask(SIG_SETMASK, &prev_one, NULL); / Unblock SIGCHLD / if (!bg) { //because sigchld_handler was called above,it call waitpid,so don't call and circular wait wait waitfg(pid); } else printf("[%d] (%d) %s", pid2jid(pid),pid, cmdline); } return;}/ parseline - Parse the command line and build the argv array. Characters enclosed in single quotes are treated as a single argument. Return true if the user has requested a BG job, false if the user has requested a FG job. /int parseline(const char cmdline, char argv) { static char array[MAXLINE]; / holds local copy of command line / char buf = array; / ptr that traverses command line / char delim; / points to first space delimiter / int argc; / number of args / int bg; / background job? / strcpy(buf, cmdline); buf[strlen(buf)-1] = ' '; / replace trailing '\n' with space / while (buf && (buf == ' ')) / ignore leading spaces /buf++; / Build the argv list / argc = 0; if (buf == '\'') {buf++;delim = strchr(buf, '\''); } else {delim = strchr(buf, ' '); } while (delim) {argv[argc++] = buf;delim = '\0';buf = delim + 1;while (buf && (buf == ' ')) / ignore spaces / buf++;if (buf == '\'') { buf++; delim = strchr(buf, '\'');}else { delim = strchr(buf, ' ');} } argv[argc] = NULL; if (argc == 0) / ignore blank line /return 1; / should the job run in the background? / if ((bg = (argv[argc-1] == '&')) != 0) {argv[--argc] = NULL; } return bg;}/ builtin_cmd - If the user has typed a built-in command then execute it immediately. /int builtin_cmd(char argv) { if(!strcmp(argv[0],"quit")) / quit command / exit(0); if (!strcmp(argv[0], "&")) / Ignore singleton & / return 1; if(!strcmp((argv[0]),"jobs"))/ jobs command / { listjobs(jobs); return 1; } if(!strcmp((argv[0]),"fg") || !strcmp((argv[0]),"bg"))/ bg/fg command / { do_bgfg(argv); return 1; } return 0; / not a builtin command /}/ do_bgfg - Execute the builtin bg and fg commands /void do_bgfg(char argv) { if(!argv[1]){ printf("%s command requires PID or %%jobid argument\n", argv[0]); return; } if (!isdigit(argv[1][0]) && argv[1][0] != '%') { // Checks if the second argument is valid printf("%s: argument must be a PID or %%jobid\n", argv[0]); return; } struct job_t myjob; if(argv[1][0]=='%'){//jid myjob = getjobjid(jobs,atoi(&argv[1][1])); if(!myjob){ printf("%s: No such job\n", argv[1]); return; } }else{//pid myjob = getjobpid(jobs,atoi(argv[1])); if (!myjob) { // Checks if the given PID is there printf("(%d): No such process\n", atoi(argv[1])); return; } } Kill(-myjob->pid,SIGCONT);//send continue signal if(!strcmp(argv[0],"bg")){ myjob->state = BG; printf("[%d] (%d) %s",myjob->jid,myjob->pid,myjob->cmdline); }else{ myjob->state = FG; waitfg(myjob->pid); } return;}/ waitfg - Block until process pid is no longer the foreground process /void waitfg(pid_t pid){ while(fgpid(jobs)) usleep(1000);//sleep one second return;}/ Signal handlers // sigchld_handler - The kernel sends a SIGCHLD to the shell whenever a child job terminates (becomes a zombie), or stops because it received a SIGSTOP or SIGTSTP signal. The handler reaps all available zombie children, but doesn't wait for any other currently running children to terminate. /void sigchld_handler(int sig) { int olderrno = errno; sigset_t mask_all,prev; pid_t pid; int status; Sigfillset(&mask_all); while((pid = waitpid(-1,&status,WNOHANG | WUNTRACED))>0){ // WNOHANG | WUNTRACED return immediately if (WIFEXITED(status)) // normally exited,delete job { sigprocmask(SIG_BLOCK, &mask_all, &prev); deletejob(jobs, pid); sigprocmask(SIG_SETMASK, &prev, NULL); } else if (WIFSIGNALED(status)) //terminated by signal, delete job and print message { struct job_t job = getjobpid(jobs, pid); sigprocmask(SIG_BLOCK, &mask_all, &prev); printf("Job [%d] (%d) terminated by signal %d\n", job->jid, job->pid, WTERMSIG(status)); deletejob(jobs, pid); sigprocmask(SIG_SETMASK, &prev, NULL); } else //stopped,change the status { struct job_t job = getjobpid(jobs, pid); sigprocmask(SIG_BLOCK, &mask_all, &prev); printf("Job [%d] (%d) stopped by signal %d\n", job->jid, job->pid, WSTOPSIG(status)); job->state= ST; sigprocmask(SIG_SETMASK, &prev, NULL); } //actually there is WIFCONTINUED,but we don't care about } errno = olderrno; return;}/ sigint_handler - The kernel sends a SIGINT to the shell whenver the user types ctrl-c at the keyboard. Catch it and send it along to the foreground job. /void sigint_handler(int sig) { int olderrno = errno; pid_t fg = fgpid(jobs); if(fg){ Kill(-fg,sig); } errno = olderrno; return;}/ sigtstp_handler - The kernel sends a SIGTSTP to the shell whenever the user types ctrl-z at the keyboard. Catch it and suspend the foreground job by sending it a SIGTSTP. /void sigtstp_handler(int sig) { int olderrno = errno; pid_t fg = fgpid(jobs); if(fg){ Kill(-fg,sig); } errno = olderrno; return;}/ End signal handlers // Helper routines that manipulate the job list // clearjob - Clear the entries in a job struct /void clearjob(struct job_t job) { job->pid = 0; job->jid = 0; job->state = UNDEF; job->cmdline[0] = '\0';}/ initjobs - Initialize the job list /void initjobs(struct job_t jobs) { int i; for (i = 0; i < MAXJOBS; i++)clearjob(&jobs[i]);}/ maxjid - Returns largest allocated job ID /int maxjid(struct job_t jobs) { int i, max=0; for (i = 0; i < MAXJOBS; i++)if (jobs[i].jid > max) max = jobs[i].jid; return max;}/ addjob - Add a job to the job list /int addjob(struct job_t jobs, pid_t pid, int state, char cmdline) { int i; if (pid < 1)return 0; for (i = 0; i < MAXJOBS; i++) {if (jobs[i].pid == 0) { jobs[i].pid = pid; jobs[i].state = state; jobs[i].jid = nextjid++; if (nextjid > MAXJOBS)nextjid = 1; strcpy(jobs[i].cmdline, cmdline); if(verbose){ printf("Added job [%d] %d %s\n", jobs[i].jid, jobs[i].pid, jobs[i].cmdline); } return 1;} } printf("Tried to create too many jobs\n"); return 0;}/ deletejob - Delete a job whose PID=pid from the job list /int deletejob(struct job_t jobs, pid_t pid) { int i; if (pid < 1) return 0; for (i = 0; i < MAXJOBS; i++) { if (jobs[i].pid == pid) { clearjob(&jobs[i]); nextjid = maxjid(jobs)+1; return 1; } } return 0;}/ fgpid - Return PID of current foreground job, 0 if no such job /pid_t fgpid(struct job_t jobs) { int i; for (i = 0; i < MAXJOBS; i++)if (jobs[i].state == FG) return jobs[i].pid; return 0;}/ getjobpid - Find a job (by PID) on the job list /struct job_t getjobpid(struct job_t jobs, pid_t pid) { int i; if (pid < 1)return NULL; for (i = 0; i < MAXJOBS; i++)if (jobs[i].pid == pid) return &jobs[i]; return NULL;}/ getjobjid - Find a job (by JID) on the job list /struct job_t getjobjid(struct job_t jobs, int jid) { int i; if (jid < 1)return NULL; for (i = 0; i < MAXJOBS; i++)if (jobs[i].jid == jid) return &jobs[i]; return NULL;}/ pid2jid - Map process ID to job ID /int pid2jid(pid_t pid) { int i; if (pid < 1)return 0; for (i = 0; i < MAXJOBS; i++)if (jobs[i].pid == pid) { return jobs[i].jid; } return 0;}/ listjobs - Print the job list /void listjobs(struct job_t jobs) { int i; for (i = 0; i < MAXJOBS; i++) {if (jobs[i].pid != 0) { printf("[%d] (%d) ", jobs[i].jid, jobs[i].pid); switch (jobs[i].state) {case BG: printf("Running "); break;case FG: printf("Foreground "); break;case ST: printf("Stopped "); break; default: printf("listjobs: Internal error: job[%d].state=%d ", i, jobs[i].state); } printf("%s", jobs[i].cmdline);} }}/ end job list helper routines // Other helper routines // usage - print a help message /void usage(void) { printf("Usage: shell [-hvp]\n"); printf(" -h print this message\n"); printf(" -v print additional diagnostic information\n"); printf(" -p do not emit a command prompt\n"); exit(1);}/ unix_error - unix-style error routine /void unix_error(char msg){ fprintf(stdout, "%s: %s\n", msg, strerror(errno)); exit(1);}/ app_error - application-style error routine /void app_error(char msg){ fprintf(stdout, "%s\n", msg); exit(1);}/ Signal - wrapper for the sigaction function /handler_t Signal(int signum, handler_t handler) { struct sigaction action, old_action; action.sa_handler = handler; sigemptyset(&action.sa_mask); / block sigs of type being handled / action.sa_flags = SA_RESTART; / restart syscalls if possible / if (sigaction(signum, &action, &old_action) < 0)unix_error("Signal error"); return (old_action.sa_handler);}/ sigquit_handler - The driver program can gracefully terminate the child shell by sending it a SIGQUIT signal. /void sigquit_handler(int sig) { printf("Terminating after receipt of SIGQUIT signal\n"); exit(1);}/ my functions with error handling // fork error handling /pid_t Fork(void){ pid_t pid; if ((pid = fork()) < 0) unix_error("Fork error"); return pid;}/ execve error handling /void Execve(const char filename, char const argv[], char const environ[]){ if (execve(filename, argv, environ) < 0) { printf("%s: Command not found.\n", argv[0]); exit(0); }}/ kill error handling /void Kill(pid_t pid, int signum) { int kr; if ((kr = kill(pid, signum)) < 0) unix_error("Kill error"); return;}/ sigemptyset error handling /void Sigemptyset(sigset_t set){ if(sigemptyset(set)<0) unix_error("Sigemptyset error"); return;}/ sigaddset error handling /void Sigaddset(sigset_t set,int sign){ if(sigaddset(set,sign)<0) unix_error("Sigaddset error"); return;}/ sigprocmask error handling / void Sigprocmask(int how, sigset_t set, sigset_t oldset){ if(sigprocmask(how,set,oldset)<0) unix_error("Sigprocmask error"); return;}/ sigfillset error handling /void Sigfillset(sigset_t set){ if(sigfillset(set)<0) unix_error("Sigfillset error"); return;}/ setpgid error handling /void Setpgid(pid_t pid, pid_t pgid) { int rc; if ((rc = setpgid(pid, pgid)) < 0) unix_error("Setpgid error"); return;}

标签:

相关文章