首页 » 排名链接 » Python实现机器学习前后端页面的交互(后端模型交互数据代码)

Python实现机器学习前后端页面的交互(后端模型交互数据代码)

神尊大人 2024-11-16 10:23:35 0

扫一扫用手机浏览

文章目录 [+]

来源:关于数据分析与可视化

对于机器学习爱好者而言,很多时候我们需要将建好的模型部署在线上,实现前后端的交互,今天

import pandas as pddf = pd.read_csv("data.csv")df.head()

output

Height Weight Species0 88.9 48.3 Dog1 90.2 47.4 Dog2 82.7 44.8 Dog3 81.4 48.2 Dog4 83.5 39.9 Dog

所涉及到的特征也就两列分别是“Hight”以及“Weight”也就是身高和体重,我们需要通过这两个特征来预测它到底是“猫”还是“狗”,代码如下

Python实现机器学习前后端页面的交互(后端模型交互数据代码) 排名链接
(图片来自网络侵删)

X = df[["Height", "Weight"]]y = df["Species"]clf = GaussianNB() clf.fit(X, y)

当然

import joblibjoblib.dump(clf, "clf.pkl")Flask框架

前端页面主要是由一系列的HTML代码写成的,代码如下

<!DOCTYPE html><html> <head> <title>Your Machine Learning App</title> </head> <body> <form name="form", method="POST", style="text-align: center;"> <br> Height: <input type="number" name="height", placeholder="Enter height in cm" required/> <br><br> Weight: <input type="number" name="weight", placeholder="Enter weight in kg" required/> <br><br> <button value="Submit">Run</button> </form> <p style="text-align: center;">{{ output }}</p> </body></html>

输出结果如下:

我们可以看到有两个输入框分别代表的是身高与体重,以及运行的按钮键。
接下来我们来写后端的逻辑代码,当前端传过来数据的时候,也就是身高与体重的数据的时候,后端的代码来调用已经训练好的模型并且做出预测,然后显示在前端的页面上。
在Flask框架中后端的业务代码大致如下

from flask import Flask, request, render_templateimport pandas as pdimport joblib# 声明是一个Flask应用app = Flask(__name__)# 主要业务逻辑# ------------------# 运行整体的应用if __name__ == '__main__': app.run(debug = True)

那么在本篇文章的项目背景下,代码如下

@app.route('/', methods=['GET', 'POST'])def main(): # 表单数据提交,POST请求 if request.method == "POST": # 调用已经训练好的模型 clf = joblib.load("clf.pkl") # 从输入框中获取身高与体重数据 height = request.form.get("height") weight = request.form.get("weight") # 转变成DataFrame格式 X = pd.DataFrame([[height, weight]], columns = ["Height", "Weight"]) # 获取预测值 prediction = clf.predict(X)[0] else: prediction = "" return render_template("website.html", output = prediction)

然后我们运行整个脚本,效果如下

我们试着输入一些身高与体重的值,看一下返回的结果,效果如下

Streamlit框架

下面我们来看一下将模型部署在Streamlit框架下该如何来操作。
在Streamlit框架中没有特别明显的前后端代码的分离,代码如下

import streamlit as stimport pandas as pdimport joblib# 标题st.header("Streamlit Machine Learning App")# 输入框height = st.number_input("Enter Height")weight = st.number_input("Enter Weight")# 点击提交按钮if st.button("Submit"): # 引入训练好的模型 clf = joblib.load("clf.pkl") # 转换成DataFrame格式的数据 X = pd.DataFrame([[height, weight]], columns=["Height", "Weight"]) # 获取预测出来的值 prediction = clf.predict(X)[0] # 返回预测的值 st.text(f"This instance is a {prediction}")

最后生成的页面如下

我们在终端中运行以下命令

streamlit run streamlit_model.py

最后我尝试在输入框中填入一些虚构的数字,看一下出来的结果是什么样的,如下

标签:

相关文章